AM Radio: A Cornerstone of Communication in Rural America

What is AM Radio? How does it work? And how is it different from FM radio? Let’s dig into the details!

radio_adobe stock.png

Adobe Stock

Right now in America, the viability of AM radio is in jeopardy. Companies like Ford are choosing to remove the technology from their cars, due to the high costs associated with harnessing that somewhat antiquated technology and the decrease in its use. It’s also not included in many new-model electric vehicles.

Do people even use AM Radio anymore? The answer is YES! It’s a very important form of communication and technology used in rural America that can’t be retired until a viable replacement is available to those that still rely on it.

Why is AM Radio being left in the dust? While not every car or truck owner regularly tunes into AM radio, the ones that do likely live and work in areas where they have limited access to the reach of FM stations. And what about satellite radio? While it’s available across America, it doesn’t provide local access to emergency communication, weather alerts, agriculture news, and high school or regional college sports broadcasts. Think about it, when you’re in the middle of nowhere in a bad storm and need information, you probably turn on AM radio!

Radio: Sound v. Light Waves

Did you know radio waves are floating all around you, in every direction, totally undetectable to the human eye?

Wait, don’t you mean ears?

Nope! Radio waves are technically a long-wave form of electromagnetic energy within the spectrum of light -- not SOUND!

However, sound and light waves are interconnected but travel at different speeds and are perceived in different ways. (Like when you see a lightning strike, and then a few seconds later hear the thunder it creates.)

Sound waves are mechanical. They need a medium (like air or water) to travel. Say, you are playing a musical instrument. You can exert more energy as you play, making the sound louder; or amplifying the instrument so it can be heard from farther away. But the distance the sound can travel is relatively small because it can only travel as far as its medium can take it. The further away from the source of the sound and the more physical barriers (like walls) between the listener and the origin of the sound, the less you will hear the sound.

Back in the 1920s, scientists wanted to figure out a way to transfer sound over much greater distances as a way to communicate. They were able to accomplish this — in a simplistic sense, by converting sound into light.

So, how is this possible? The answer is radio waves!

Unlike sound waves, radio waves are a form of electromagnetic light. Light doesn’t need a medium to travel. That’s why radio signals can travel through physical barriers and even through space! However, radio waves cannot be “heard” unless a process called “modulation” occurs. That is the modification or variation of one or more properties of the wave.

radio tower.png

Adobe Stock

Radio 101

“Radio,” as we know it today, was discovered when scientists realized you could capture the energy of a sound (with microphones) and convert that energy into electricity.

A radio station’s transmitter emits an electromagnetic wave that doesn’t change until a sound is applied (aka “radio silence”). When a sound is captured by a microphone, it is converted into electricity, which can be carried through wires.

The electricity is converted (or “modulated”) into an electromagnetic signal that can be received by radio antennae. When that electricity is joined with a “carrier wave,” or signal, it can be transmitted from one place and received in another far away.

Once received, your radio then converts (or “demodulates”) the electrical signal back into sound waves and produces the noises you hear through your speakers.

SOUND EMITTED -> CAPTURED BY A MICROPHONE -> TRANSMITTER (ELECTRICITY + CARRIER WAVE) -> RECEIVER -> SPEAKER -> SOUND HEARD

Modulation of a radio wave can occur in two different ways, and it explains the difference between AM radio and FM radio.

What’s the difference between AM radio and FM radio?

AM radio and FM radio differ in the way they manipulate the carrier signal during transmission. Changing either the amplitude (the height of the wave) or frequency (the speed of the waves) of the carrier signal. [Another important thing to know is that amplitude and frequency are indirectly proportional, meaning as one increases the other decreases or must be held constant.]

AM and FM radios also operate in different frequency ranges and require different bandwidths (which determines how much information can be transmitted at once.)

What is AM Radio? What does AM Radio stand for?

AM Radio stands for “amplitude modulation.” Simply put, in AM radio, the amplitude is modulated. Amplitude affects the loudness or softness of the sound. So when the amplitude of a radio wave is increased, the loudness increases.

However, increasing the amplitude of a radio wave also decreases the frequency, so the sound heard on the other side of the transmission might be fuzzy or contain static on the other side of the transmission. This is also largely because AM radio is sent over a “medium frequency” and is prone to sound interference.

AM radio operates at a low frequency, between 535 kiloHertz and 1650 kHz, and a smaller bandwidth (10 kHz). As you adjust your dial, it changes by 10 kHz each time, so each station has that much bandwidth with which to broadcast.

What is FM Radio? What does FM Radio stand for?

In FM radio, the frequency of the carrier signal is changed. Frequency affects the pitch, or clarity, of a sound. As the frequency increases so does the quality of the sound. But, while the clarity of a sound increases at higher frequencies, the amplitude remains constant, so it travels a shorter distance than waves where the amplitude is modulated.

FM radio operates at a higher frequency than AM, between 88 megaHertz (mHz) and 108 mHz, and each station is allowed 150 kHz of bandwidth -- which means they can transmit 15 times more information at once than an AM station. That’s why music typically sounds much clearer on FM radio than on AM.

So, what’s better: AM radio or FM radio?

The real answer? It depends on what you’re trying to accomplish.

FM Radio is great for transmitting music because it sends a clear sound. However, since the amplitude remains constant, the broadcast can’t travel quite as far and is more easily obstructed by physical barriers, so it may not reach as many people.

AM radio is the better choice if you want your broadcast to reach as many people as possible, over a greater distance, and stay intact as it hits barriers like buildings or mountains. That’s why it’s such an important means of communication in rural America.

Until a more modern form of technology and communication (like broadband or fiber internet) is as widely accessible as AM radio, that technology must be still usable and accessible to all. Specifically, for the transmission and receiving of news, weather, and emergency communication.

Related Stories
Chefs Chris Carter and James Peisker believe we have the power to make the world a better place with every meal. Through Porter Road butcher, they are now turning this belief into reality.
Researchers at the Boyce Thompson Institute have constructed the perfect watermelon—returning “lost” genes from the domesticated fruit’s wild relatives that improve both taste and resilience during the growing process.
It’s National Farmers Market Week! A time for local farmers and consumers across the U.S. to celebrate the growth, impact, and vital role of farmers markets in America’s food supply chain.
Researchers at Florida Atlantic University’s Harbor Branch Oceanographic Institute found human sewage, not fertilizer, is mainly responsible for dangerous nitrogen levels in Florida’s Indian River Lagoon.
Happy Independence Day from all of us at RFD-TV! We pulled together a playlist of some of our favorite country songs to play this Fourth of July!
A new study identified compounds within a “failed” tuberculosis treatment that effectively fight some herbicide-resistant “superweeds” in Australia. Researchers say their findings could be a “game-changer for the agriculture sector.”
Dennis Quaid has been very busy lately — whether he is entertaining us on-screen in an array of iconic roles or serenading us on-stage as the frontman of Dennis Quaid & The Sharks — we have a lot to ask the acclaimed actor & singer-songwriter when he visits RFD-TV’s TalkShopLive!

Marion is a digital content manager for RFD-TV and The Cowboy Channel. She started working for Rural Media Group in May 2022, adding a decade of experience in the digital side of broadcast media and some cooking experience to the team.

LATEST STORIES BY THIS AUTHOR:

RanchHER Season 2, Episode 7
Premieres Tue, 10/22/24 – 9 PM ET | 8 PM CT | 7 PM MT | 6 PM PT
Meet FarmHER Stephanie Stade Townsend, part of the second generation on Stade’s Farm & Market in McHenry, Illinois. The popular agritourism spot outside Chicago offers carnival attractions alongside their classic farmer’s market and u-pick produce and flower farm!
FarmHER Kate Hitchcock joined us on the Market Day Report to discuss the upcoming episode of the show where Kirbe and the crew visit her family’s produce operation in California’s Salinas Valley, which premieres tomorrow, Sept. 24 at 9 PM ET only on RFD-TV.
Poultry FarmHER Cynthia Capers joined us Monday on the Market Day Report to discuss her upcoming episode on the new season of FarmHER.
FarmHer Cynthia Capers breeds heritage birds near Nashville, TN. See why she’s the only person who may help Kirbe conquer her bird fear.
FarmHER Moriah Hunter joined us Tuesday on Market Day Report to share what it was like having the FarmHER crew visit her hay and beef operation, Hunter Creek Farms, in La Grange, Ky.